Assessing scoring functions for protein-ligand interactions.
نویسندگان
چکیده
An assessment of nine scoring functions commonly applied in docking using a set of 189 protein-ligand complexes is presented. The scoring functions include the CHARMm potential, the scoring function DrugScore, the scoring function used in AutoDock, the three scoring functions implemented in DOCK, as well as three scoring functions implemented in the CScore module in SYBYL (PMF, Gold, ChemScore). We evaluated the abilities of these scoring functions to recognize near-native configurations among a set of decoys and to rank binding affinities. Binding site decoys were generated by molecular dynamics with restraints. To investigate whether the scoring functions can also be applied for binding site detection, decoys on the protein surface were generated. The influence of the assignment of protonation states was probed by either assigning "standard" protonation states to binding site residues or adjusting protonation states according to experimental evidence. The role of solvation models in conjunction with CHARMm was explored in detail. These include a distance-dependent dielectric function, a generalized Born model, and the Poisson equation. We evaluated the effect of using a rigid receptor on the outcome of docking by generating all-pairs decoys ("cross-decoys") for six trypsin and seven HIV-1 protease complexes. The scoring functions perform well to discriminate near-native from misdocked conformations, with CHARMm, DOCK-energy, DrugScore, ChemScore, and AutoDock yielding recognition rates of around 80%. Significant degradation in performance is observed in going from decoy to cross-decoy recognition for CHARMm in the case of HIV-1 protease, whereas DrugScore and ChemScore, as well as CHARMm in the case of trypsin, show only small deterioration. In contrast, the prediction of binding affinities remains problematic for all of the scoring functions. ChemScore gives the highest correlation value with R(2) = 0.51 for the set of 189 complexes and R(2) = 0.43 for the set of 116 complexes that does not contain any of the complexes used to calibrate this scoring function. Neither a more accurate treatment of solvation nor a more sophisticated charge model for zinc improves the quality of the results. Improved modeling of the protonation states, however, leads to a better prediction of binding affinities in the case of the generalized Born and the Poisson continuum models used in conjunction with the CHARMm force field.
منابع مشابه
Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions.
The scoring function is one of the most important components in structure-based drug design. Despite considerable success, accurate and rapid prediction of protein-ligand interactions is still a challenge in molecular docking. In this perspective, we have reviewed three basic types of scoring functions (force-field, empirical, and knowledge-based) and the consensus scoring technique that are us...
متن کاملScoring ligand similarity in structure-based virtual screening.
Scoring to identify high-affinity compounds remains a challenge in virtual screening. On one hand, protein-ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand-based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three-dimensional reference ligand. Our hypothesis is that a hybr...
متن کاملThe influence of protonation in protein-ligand docking
With the use in Virtual Screening (VS) in experiments Protein-Ligand-Docking has gained more and more importance in pharmaceutical research over the past years. To model the interactions between the protein and a ligand empirical scoring functions are used in many programs. These scoring functions consist of different terms, which describe physical and chemical properties important for an attra...
متن کاملProtein-Ligand Scoring with Convolutional Neural Networks
Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for pro...
متن کاملInclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions
The effects of solvation and entropy play a critical role in determining the binding free energy in protein-ligand interactions. Despite the good balance between speed and accuracy, no current knowledge-based scoring functions account for the effects of solvation and configurational entropy explicitly due to the difficulty in deriving the corresponding pair potentials and the resulting double c...
متن کاملAn iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 22...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 47 12 شماره
صفحات -
تاریخ انتشار 2004